GRADE 5 TERM 1

| CONTENT AREA | TOPICS | $\begin{array}{c}\text { CONCEPTS AND SKILLS }\end{array}$ | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :---: | :---: | :--- | :--- | :--- |\(\left.] \begin{array}{c}DURATION

(in hours)\end{array}\right]\)

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	NUMBERS, OPERATIONS AND RELATIONSHIPS	Mental Mathematics	Calculation techniques Using a range of techniques to perform and check written and mental calculations of whole numbers including: - estimation - adding and subtracting in columns - building up and breaking down numbers - using a number line - rounding off and compensating - doubling and halving - using addition and subtraction as inverse operations - using multiplication and division as inverse operations Number range for multiples and factors - Multiples of 2-digit whole numbers to at least 100 - Factors of 2-digit whole numbers to at least 100 Properties of whole numbers - Recognize and use the commutative associative, distributive properties of whole numbers - 0 in terms of its additive property - 1 in terms of its multiplicative property	- number concept - counting \diamond count forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}$, between 0 and at least 1000 \diamond count forwards and backwards in 100 s between 0 and at least 10000 . - ordering and comparing up to 4-digit numbers - place value for numbers of up to 4-digits - building up and breaking down numbers - odd and even numbers - multiples Some mental Mathematics can be done without apparatus, but it is often useful to do mental Mathematics with apparatus Recommended apparatus - a number line - a number grid - place value cards - counting beads	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Counting, ordering, comparing, representing and place value of digits	Number range for counting, ordering, comparing and representing and place value of digits - Count forwards and backwards in whole number intervals up to at least 10000 - Order, compare and represent numbers to at least 4-digit numbers - Represent odd and even numbers to at least 1000 - Recognize the place value of digits in whole numbers to at least 6-digit numbers - Rounding off to the nearest 5,10 , 100 and 1000	In Term 1, learners should revise and consolidate work done in Grade 4 - Count forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ between 0 and at least 1000 - Count forwards and backwards in 100s between 0 and at least 10000. - Order, compare and represent numbers to at least 4-digit numbers. - Recognize the place value of digits in whole numbers to at least 4-digit numbers. - Round off to the nearest 10 and 100 Counting Counting should not only be thought of as verbal counting. Learners should count using apparatus such as - counters - counting beads - number grids - structured, semi-structured and empty number lines - pictures of objects, especially pictures of large numbers of objects that are presented in a grouped or structured way. An example of a picture of objects suitable for counting is provided at the end of the Grade 5 section on Numbers, Operations and relationships. - arrays or diagrams of arrays e.g. - other diagrams for counting e.g. Counting should not always start on the first multiple. Nor should it always start on any other multiple e.g. counting in 2 s can start from 5 or 27 or 348.	2 hours

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Counting, ordering, comparing, representing and place value of digits		Place value (number range 0 to 999) Learners should be able to break up numbers into hundreds, tens and units using - the number names (number words) - place value or flash cards - expanded notation, Recommended apparatus: place value/flash cards, Dienes blocks Compare and order (number range 0 to 999) Here learners should be given a range of exercises, e.g. - Arrange the given numbers below from the smallest to the biggest, or biggest to smallest - Fill in missing numbers in - a sequence - on a number grid - Show a given number on a numbered or un-numbered number line e.g. on a number show line which number is halfway between 1340 and 1350 . - Indicate which of two numbers is greater or smaller e.g. 5431 or 5413. - Replace * with <, = or > e.g. 7889 * 7 898, 4109 * 5190 All work developed here can be practised throughout the year in the mental Mathematics programme.	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	2.1 Number sentences (introduction to algebraic expressions)	Number sentences - Write number sentences to describe problem situations - Solve and complete number sentences by - inspection - trial and improvement - Check the solution by substitution	Writing number sentences can be seen as a way of preparing learners to write algebraic equations. Number sentences can be used to describe problem situations. Number sentences can also be used as an equivalent form of expression to sections of flow diagrams or tables. Sometimes in the Intermediate Phase learners work with number sentences in isolation. However, it is more common for learners to work with number sentences and other forms of representation e.g. problems specified in words, numbers and calculations represented in diagrams (including flow diagrams). Examples of the above should be included at appropriate times throughout the year. Number sentences are also a way of showing equivalence. It seems obvious that what is written on the one side of the equal sign is equal to what is written on the other side. However learners need to be taught that these are equivalent expressions on either side of the equal sign. In the Intermediate Phase it is useful to use number sentences, and patterns made up of number sentences to assist learners to make sense of and learn the following: - The inverse relationship between addition and subtraction - The commutative, associative, and distributive properties with whole numbers and how we can use these properties together with building up and breaking down numbers when we add and subtract - Addition and subtraction facts for: - units - multiples of 10 - multiples of 100 - multiples of 1000 Exploring, understanding and learning the logic of equivalent statements, by working through patterns made up of number sentences, helps learners to learn calculation techniques. At the start of the year number sentences can be used to help learners understand and use the commutative and associative properties when calculating with whole numbers. This will prepare them for the calculations that they will do early in the first term	3 hours

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
N	PATTERNS, FUNCTIONS AND ALGEBRA	2.1		Using number sentences to consolidate learners' understanding of the	
		Number		additive properties of	
		sentences		Examples:	
		(introduction		$63-63=\square$	
		to algebraic		$742-742=\square$	
				$7654-\square=7654$	
				After completing a number of similar examples, learners should explain in their own words what they notice.	
				Further examples:	
				a) $79-4+4=\square$	
				b) $237+6-6=\square$	
				c) $6997+6-6=\square$	
				d) $54+6-\square=54$	
				After completing a number of similar examples, learners should explain what they notice in their own words.	
				Further examples	
				a) $62+5=\square+4$ (learners can use the fact that $5=4+1$, so $62+1+4=63+4$	
				b) $23+7-\square=22$	
				c) $20-12=\square+12-12$	
				Using number sentences to focus attention on addition and subtraction as inverse operations and to encourage learners to use them in calculations	
				Subtraction can undo what addition does and addition can undo what subtraction does if you keep the numbers the same.	
				Learners are not expected to use the expression "inverse operations". They are expected to know that	
				- addition can be used to check subtraction calculations	
				- subtraction can be used to check addition calculations	
				Examples:	
				$54-12=\square \quad$ therefore $\quad 42+12=\square$	
				$387-142=\square$ therefore $245+142=\square$	
				$482+200=\square$ therefore $682-200=\square$	
				$262+237=\square \quad$ therefore $499-237=\square$	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	Number sentences (introduction to algebraic expressions)		After completing a number of similar examples, learners should explain in their own words what they notice	
			Using number sentences to focus attention on multiplication and division as inverse operations and to encourage learners to use them in calculations	
			Examples:	
			$8 \times 9=\square \quad$ therefore $\quad 72 \div 9=\square$	
			$6 \times 7=\square \quad$ therefore $\quad 42 \div 7=\square$	
			$32 \times 3=\square \quad$ therefore $6 \div 3=\square$	
			$4 \times 1000=\square$ therefore $4000 \div 1000=\square$	
			Using number sentences to consolidate learners understanding of the multiplicative properties of 1	
			a) $45 \times 1=\square$	
			b) $8 \div 8=\square$	
			c) $74 \div 74=\square$	
			d) $7654 \div 7654=\square$	
			e) $\square \div 9=1$	
			After completing a number of similar examples, learners should explain what they notice in their own words. They are expected to be able to say: "When you divide a number by itself, you get 1 "; "When you multiply or divide a number by 1 it remains unchanged".	
			Further examples:	
			a) $63 \div 7 \times 7=\square$	
			b) $54 \div 6 \times 6=\square$	
			c) $6997 \div 6 \times 6=\square$	
			After completing a number of similar examples, learners should explain what they notice in their own words.	
			They are expected to conclude: "When you multiply and divide by the same number, you get back to the number you started with".	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction	Number range for calculations Addition and subtraction of whole numbers with at least 5-digit numbers Calculation techniques Using a range of techniques to perform and check written and mental calculations with whole numbers including - estimation - adding and subtracting in columns - building up and breaking down numbers - using a number line - rounding off and compensating - doubling and halving - using addition and subtraction as inverse operations Properties of whole numbers - Recognize and use the commutative, associative and distributive properties with whole numbers - O in terms of its additive property - 1 in terms of its multiplicative property Solving problems - Solve problems involving whole numbers, including - financial contexts - measurement contexts	Numbers, operations and relationships make up about half the Mathematics that learners do in the Intermediate Phase. Rather than focus on addition and subtraction once in the year, it is recommended that learners revisit addition and subtraction each term in Grade 5. In Term 1, learners should revise and consolidate work done in Grade 4. Learners add and subtract numbers with up to digits. Learners round off numbers to the nearest 10, 100 where appropriate Learners should do context free calculations and solve problems in contexts It helps learners to become more confident in and more independent at Mathematics, if they have techniques - to check their solutions themselves - to judge the reasonableness of their solutions Judging reasonableness of solutions Learners should be trained to judge the reasonableness of solutions. One way to do this is to estimate their answers before calculating. They can round off the number involved in the calculations. When adding or subtracting -digit numbers, learners can round off to the nearest When adding two numbers that are close to each other e.g. 3345 and 3340 learners can use doubling as a way of estimating their answers. Checking solutions Learners should know that they can - check an addition calculation by subtraction. Example: If $5362+2488=7848$ then $7848-2488=5362$ - check a subtraction calculation by addion Example: If $4687-2134=2544$ then $2544+2134=4687$ Using the inverse operation to check solutions is one reason for teaching addition and subtraction simultaneously. Another reason for doing the two operations at the same time is that when learners solve problems, it is sometimes possible to solve the same problem by doing either addition or subtraction Example: Veli's shopping costs R163. He pays with a R200 note. How much change does he get"? Some learners may add on from R163 to get R200 e.g. R163 + R7 = R170 and R170 + R30 = R200. This means Veli gets R37 change.	5 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction		For the first part of Grade 5 addition and subtraction techniques are still based on breaking down numbers. As the numbers learners work with get larger, learners may begin to lose track of some numbers when they break up numbers to do calculations. Using brackets is helpful to show grouping of numbers and so helps learners keep track of what they are doing. Since the operations in brackets have to be done first, it removes any confusion about the order of operations. Learners thus do not have to learn rules such as BODMAS if brackets are used routinely to indicate which operations have to be done first. - Breaking down all numbers according to place value parts to add Example: Calculate $5362+2486$ $\begin{aligned} & =5000+300+60+2+2000+400+80+6 \\ & =5000+2000+300+400+60+80+2+6 \\ & =7000+700+140+8 \\ & =7848 \end{aligned}$ OR $2+6=8$ and $60+80=140$ and $300+400=700$ and $5000+2000=7000$ and $7000+700+140+8=7848$ means $5362+2486=7848$ - Adding on (by breaking down the number to be added) Example: Calculate $5362+2486$ $5362+2000 \rightarrow 7362+400 \rightarrow 7762+80 \rightarrow 76842+6 \rightarrow 7848$ This may get unwieldy if more than numbers are added - Filling up tens or hundreds by breaking down the number to be added This can also be called rounding off and compensating.	

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction		- Subtracting by breaking down the number to be subtracted Calculate 4687 - 2143 $4687-2000 \rightarrow 2687-100 \rightarrow 2587-40 \rightarrow 2547-3=2544$ This may get unwieldy if more than 2 numbers are subtracted. - Using the additive property of zero by compensation to calculate Calculate $2696+2$ 387: $\begin{aligned} 2296+2387 & =2296+4-4+2387 \\ & =2300+2387-4 \\ & =2300+2683 \\ & =4983 \end{aligned}$ This may get unwieldy if more than 2 numbers are added. This method may work better if smaller numbers are added e.g. 2-digit or 3-digit numbers. Kinds of problems Summation, lincrease and decrease, comparison by difference comparison by ratio See the description of problem types at the end of the Grade 5 notes	
	ASSESSMENT: At this stage learners should have been assessed on: - 4-digit numbers - adding and subtracting with 4-digit numbers - working with number sentences				

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	2.1 Numeric patterns		This can be consolidated by multiplying by other multiples of 10 . Similar pairs of flow diagrams can be used, to help learners develop techniques for multiplying by multiples of Other quick multiplication techniques can be developed in this way Examples Learners can develop fast mental and written techniques based on this. Once learners understand these techniques for multiplying and dividing, further practice can be given in the mental mathematics programme.	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Multiplication and division	Number range for calculations - multiplication of at least whole -3-digit by 2-digit numbers - division of at least whole 3-digit by 1-digit numbers Calculation techniques Using a range of techniques to perform and check written and mental calculations of whole numbers including: - estimation - building up and breaking down numbers - using a number line - rounding off and compensating - doubling and halving - using addition and subtraction as inverse operations - using multiplication and division as inverse operations Number range for multiples and factors - Multiples of 2-digit whole numbers to at least 100 - Factors of 2-digit whole numbers to at least 100 Properties of whole numbers - Recognize and use the commutative; associative; distributive properties of whole numbers - 0 in terms of its additive property - 1 in terms of its multiplicative property	Rather than do all the multiplication and division in one block, it is recommended that learners revisit calculations regularly. In this suggested sequencing of work, learners do multiplication and division in 3 of the 4 terms in Grade 4. Nine hours are allocated to multiplication and division for Term 1. What is different to Grade 4? In Term 1, learners revise and consolidate work done in Grade 4 i.ie. - learners multiply at least 2-digit numbers by 2-digit numbers - learners divide at least whole 3-digit by1-digit numbers Learners can recap the properties of multiplication and division and brush up on their skills Learners should do context free calculations and solve problems in contexts The following problem types remain important: sharing, grouping, treating groups as units, rate, ratio(see the description of problem types at the end of the Grade 5 notes) Remember, that it helps learners to become more confident in and more independent in Mathematics, if they have techniques - to check their solutions themselves - to judge the reasonableness of their solutions Judging reasonableness of solutions Learners should estimate their answers before calculating. They can round off the numbers involved in the calculations. Learners can round off to the nearest when multiplying or dividing with 2-digit numbers Checking solutions Learners should know that they can check a division calculation by doing multiplication. Example: If $69 \div 3=23$; then $23 \times 3=69$ When learners check a division calculation involving a remainder, they must be taught to first multiply the quotient by the divisor and then to add the remainder Example: If $70 \div 3=23$ remainder 1 ; then $23 \times 3=69$ and $69+1=70$ Using the inverse operation to check solutions is one reason for teaching multiplication and division simulteneously. Another reason for combining multiplication and division is that we almost always use multiplication to solve division problems.	6 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Multiplication and division	Solving problems - Solve problems involving whole numbers, including - financial contexts - measurement contexts - Solve problems involving whole numbers, including: - comparing two or more quantities of the same kind (ratio) - comparing two quantities of different kinds (rate) - grouping and equal sharing with remainders	In Grade 5 learners continue to break up numbers to multiply. There are different ways of doing this. Sometime the numbers involved in the calculation make different methods easier or more difficult. Learners are already able to use the associative and commutative properties to multiply two or more numbers. Multiplication and the distributive law One way for learners to understand how and why the distributive property works, is to split arrays and write number sentences to describe the arrays. Example The distributive law allows you to break down the number and then multiply each part separately. As the numbers learners work with get larger, learners may begin to lose track of some numbers when they break up numbers to do calculations. Using brackets is helpful to show grouping of numbers and so helps learners keep track of what they are doing. Since the operations in brackets have to be done first, it removes any confusion about the order of operations. Learners thus do not have to learn rules such as BODMAS if brackets are used routinely to indicate which operations have to be done first. Using the distributive property to multiply $\begin{aligned} & 47 \times 45 \\ & 47 \times(40+5) \\ & =47 \times 40+47 \times 5 \cdots \quad \begin{array}{c} \text { (} \text { breaking up one number) } \end{array} \\ & =1880+235 \\ & =2115 \end{aligned}$ or $\begin{aligned} 47 \times 50-5 & =47 \times 50-47 \times 5 \cdots \text { (using the distributive property) } \\ & =2350-235 \\ & =2115 \end{aligned}$	

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
$\stackrel{\rightharpoonup}{\text { A }}$	NUMBERS,	1.1		Example of checking reasonableness by rounding off	
	OPERATIONS AND	Whole numbers		$47 \times 45 \approx 47 \times 50 \approx 2350$ by approximating the multiplicand.	
		Multiplication		or	
		and		$54 \times 26 \approx 50 \times 45 \approx 2250$ by approximating the multiplier.	
		division		Breaking down numbers into suitable factors to multiply	
				Example:	
				a) Calculate 47×12	
				$47 \times 12=47 \times 2 \times 6-\cdots \rightarrow$ (breaking down 12 into its factors)	
				$=(47 \times 2) \times 2 \times 3--\rightarrow$ (breaking down 6 into its factors)	
				$=(94 \times 2) \times 3$	
				$=188 \times 3$	
				$=(100+80+8) \times 3$	
				$=300+240+24$	
				$=564$	
				b) Calculate 53×45	
				$53 \times 45=53 \times 9 \times 5 \rightarrow--\longrightarrow$ (breaking down 45 into its factors)	
				$=(53 \times 3) \times 3 \times 5 \cdots$ (breaking down 9 into its factors)	
				$=(159 \times 3) \times 5$	
				$=477 \times 5$	
				$=(400+70+7) \times 5$	
				$=2000+350+35$	
				$=2385$	
				Dividing	
				Problems	
				There are two kinds of problems that result in division. It is important that learners experience both of these:	
				- sharing problems: e.g. 6 learners share 32 sweets equally. How many sweets does each learner get.?	
				- grouping: e.g. Samkele has a large packet with 32 sweets. How many smaller packets can she make with 6 sweets each?	

CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	Some problems and calculations should have a remainder, and some should not. See the description of problem types at the end of the Grade 5 notes Learners continue to use what they know about multiplication to do division. As with Grade 4, learners are not encouraged to treat the digits separately, but rather to consider the number as a whole and to keep the value of the parts of the number in mind. Sometimes in the past, learners were taught to write out the whole times table, which they were encouraged to work out by repeated addition. At other times in the past learners were encouraged to divide by doing repeated subtraction of the divisor. Many learners got lost in the extensive repeated subtraction of the divisor when dividing 3 -digit by 1 -digit numbers. When dividing 3-digit by 1 -digit numbers, it is preferable for learners to work with the easily remembered multiplication facts of multiples of 10 and then doubling and halving. These large groups of numbers can then be subtracted from the number being divided into. In this way learners do fewer subtractions and are more likely to arrive at the correct answer Example Claculate $375 \div 8$ Learners can write out a "clue board" of what they know about multiplying by 8 . - This generally includes multiplying by 10 and multiples of 10 - Multiplying by 5 (halve the multiplying by 10 value). - Multiplying by 2, 4, 8 (learners get this through doubling). - Filling in other multiples as they need to use them. Learners use multiplication and then subtraction to calculate. $375 \div 8=40+6+$ remainder $7=46$ remainder 7 Learners should check their calculations by multiplying 46 by 8 and the adding 7 . Example of checking reasonableness by rounding off With division it makes more sense for learners to round off the dividend to a multiple of the divisor e.g. $400 \div 8=50$ and $320 \div 8=40$. So the answer should lie between 40 and 50 .	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
MEASUREMENT	$\begin{gathered} 4.4 \\ \text { Time } \end{gathered}$	Reading time and time instruments Read, tell and write time in 12-hour and 24 -hour formats on both analogue and digital instruments in - hours - minutes - seconds Instruments include clocks, watches and stopwatches Reading calendars Calculations and problem solving related to time include Calculation of time intervals where time is given in - seconds and/or minutes - minutes and/or hours - hours and/or days - days and/or weeks and/or months - months and/or years - years and/or decades History of time Know how time was measured and expressed in ancient times.	What is different to Grade 4? Stopwatches are introduced. Learners can either use stopwatches that occur as single instruments, or stopwatches on cell phones or wrist watches. Learners continue to read, record and calculate time in -hour and -hour formats and to work with analogue and digital instruments. This is practised regularly. Once learners have been taught to tell the time, it can be practised during the mental Mathematics section of the lesson, and frequently at other times during the day. Learners continue to read calendars Calculations and problem-solving related to time Decades are introduced. Calculations should be limited to whole numbers and fractions.	6 hours

ASSESSMENT:

At this stage learners should have been assessed on:

- multiplication (2 -digit by 2-digit numbers) and division (3-digit by 1 -digit numbers)
- time
- 2-D shapes including identifying right angles

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
				Drawing pictographs: context socio-economic data This is recommended as the Maths project for Grade 5 Learners should be given socio-economic data, preferably national or regional, so that the numbers are large. This can be provided as unstructured data, in a paragraph, in a list or in a table or tally. Learners sort and order the data and draw a pictograph with many-to-one representation. They then complete the rest of the data cycle. Suitable topics include: - Facilities at schools in SA - Sources of water for families in SA e.g. piped to house, piped to yard, piped to communal source outside the property, borehole, spring, etc. - what source/sources of lighting for families in SA, e.g. electricity, candles, paraffin, etc. - kinds of homes in SA	
$\begin{aligned} & \text { ㄴ } \\ & \text { O } \end{aligned}$	Assessment point Recommended form of assessment: Project				

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
SPACE AND SHAPE	3.1 2-D shapes		3. Learners distinguish shapes by looking at the length of the sides. Learners differentiate between squares and rectangles by looking at the lengths of the sides. However, learners can also discuss the lengths of sides of other shapes e.g. a learner may say that the following shape is a pentagon whose sides are not all the same length 4. Learners distinguish shapes by looking at the size of their angles. Here learners need to know how to identify a right angle (see notes below). They check whether shapes are rectangles or squares by checking whether all their angles are right angles. Angles In the Intermediate Phase learners measure angles informally. They do not use protractors or discuss angles in terms of degrees. In Grade 5 learners only need to know what a right angle looks like. All other angles are described as either bigger or smaller than right angles. Learners can be introduced to angles as a 'how much turning has taken place between the arms or sides of the angle'. Here a right angle is equivalent to a quarter turn or revolution. Learners use informal angle measurers such as the corner of a sheet of paper or a page folded to make a right angle, to check whether shapes or objects have right angles. Learners should first learn characteristics of each shape, before discussing comparisons between shapes. Activities to focus learners on characteristics of shapes Most commercially available sets of 2-D shapes do not show irregular shapes. They are however easy to cut out of cardboard. Learners can draw irregular shapes on grid paper or if they have geoboards, they can create irregular shapes on geoboards. Learners can also combine cut-out or plastic shape to create composite irregular shapes Examples Written exercises and recording Learners should do practical work with concrete apparatus but they should also do written exercises.	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
MEASUREMENT	4.3 Capacity/ Volume	Practical measuring of 3-D objects by estimating measuring recording comparing and ordering Measuring instruments measuring spoons, measuring cups, measuring jugs Units millilitre ($m l$) litre (l) Calculations and problem-solving related to capacity / volume include solving problems in contexts using capacity/volume converting between litres and millilitres limited to examples with whole numbers and fractions	What is capacity? What is volume? Capacity is the amount of a substance that an object can hold or the amount of space inside the object. Volume is the amount of space that an object occupies. A bottle can have a 1 litre capacity, but it may not be filled to its full capacity. It could for example, only contain a volume of 250 ml . In Grade 5 learners work with the same units of capacity that they worked with in Grade 4. They also work with the same measuring instruments. Learners need to: - consolidate their sense of how much 1 litre is - consolidate their sense of how much 1 millilitre is - understand and know the relationship between litres and millilitres. Check whether learners have a sense of which units and instruments are appropriate for measuring which various capacities. For example learners need to know which units to use to state the capacity of - a kettle - a petrol tank - a baby's milk bottle Learners should have a sense of which instruments are appropriate for measuring various capacities. For example they need to know what instruments to use to measure - liquid medicine to give to a baby - milk for a pudding recipe - water to dilute a packet of powdered cool drink Measuring capacity and reading capacity measuring instruments Learners find it easy to measure with measuring spoons or measuring cups, because this just requires filling them and pouring out the contents. Measuring with calibrated measuring jugs or other instruments with numbered and unnumbered gradation lines is more difficult. Learners need to be taught the skills of - where to stand to read a measuring jug correctly - how to read the numbered gradation lines and to calculate what the unnumbered gradation lines mean.	5 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
MEASUREMENT	4.3 Capacity/ Volume		Learners need to read - different kinds of measuring jugs - measuring jugs on which the numbered intervals, gradation lines or calibration represent different levels of the content. - measuring jugs on which there are a different number of un-numbered intervals within each numbered interval. Learners need practice with examples in which the numbered intervals are divided into - 2 un-numbered intervals - 4 un-numbered intervals - 5 un-numbered intervals - 10 un-numbered intervals Example: Here the numbered gradation lines on the jug shows 1 litre measurement readings. Think of the gradations as a number line. There are 4 spaces between each litre. This means that each small space shows $1000 \mathrm{ml} \div 4=250 \mathrm{ml}$ The liquid is filled to space above litre i.e. $1000 \mathrm{ml}+250 \mathrm{ml}=1250 \mathrm{ml}$ It is sometimes easier and cheaper to get a range of syringes with calibrated gradation lines, than it is to get a range of measuring jugs. Learners will learn the same measurement reading skills if they work with syringes rather than jugs.	

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :--- | :--- | :--- | :--- | :--- |

$\begin{aligned} & \stackrel{\rightharpoonup}{7} \end{aligned}$	GRADE 5 TERM 2				
	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION （in hours）
	NUMBERS， OPERATIONS AND RELATIONSHIPS	Mental Mathematics	Mental calculations involving： －Addition and subtraction facts of： －units －multiples of 10 －multiples of 100 －multiples of 1000 －Multiplication of whole numbers to at least 10×10 －Multiplication facts of： －units by multiples of 10 －units by multiples of 100 －units by multiples of 1000 －units by multiples of 10000 Number range for counting， ordering，comparing and representing，and place value of digits －Count forwards and backwards in whole number intervals up to at least 10000 －Order，compare and represent numbers to at least 6－digit numbers －Represent odd and even numbers to at least 1000 －Recognize the place value of digits in whole numbers to at least 6－digit numbers． －Round off to the nearest $5,10,100$ ， 1000	The mental Mathematics programme should be developed systematically over the year．Learners should not simply be asked to do random calculations each day． As learners cover topics and develop calculating techniques in the main part of the lesson，so aspects of these can be incorporated into the mental Mathematics programme：concepts and skills are developed through the main lesson，and then practised with smaller number ranges in the mental Mathematics programme． The mental Mathematics should systematically develop three aspects of learners＇ number knowledge －number facts －number bonds：addition and subtraction facts of \diamond units \checkmark multiples of 10 \diamond multiples of 100 \diamond multiples of 1000 －times tables up to 10×10 －calculation techniques －doubling and halving －using multiplication to do division －multiplying by 10,100 and 1000 －multiplying by multiples or 10， 100 and 1000 －dividing by 10,100 and 1000 －building up and breaking down numbers －rounding off and compensating：rounding off to 5，10， 100 and 1000 －Adding and subtracting of units，multiples of 10， 100 and 1000 to／from any 5－digit number －number concept －counting forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}$ ， 100 s between 0 and at least 10000. －ordering and comparing up to 6－digit numbers －place value for up to 6－digit numbers －building up and breaking down numbers －odd and even numbers －multiples －factors	10 minutes every day

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :--- | :--- | :--- | :--- | :--- |
| NUMBERS,
 OPERATIONS
 AND
 RELATIONSHIPS | Mental
 Mathematics | | |

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction	Number range for calculations Addition and subtraction of whole numbers with at least 5-digit numbers Calculation techniques Using a range of techniques to perform and check written and mental calculations of whole numbers including: - estimation - adding and subtracting in columns - building up and breaking down numbers - using a number line - rounding off and compensating - doubling and halving - using addition and subtraction as inverse operations Properties of whole numbers - Recognize and use the commutative; associative; distributive properties of whole numbers - 0 in terms of its additive property - 1 in terms of its multiplicative property Solving problems Solve problems involving whole numbers, including the following: - financial contexts - measurement contexts	What is different to Term 1? - In Term 2, learners add and subtract numbers with up to 5 digits. - Rounding off as a way of estimating answers to include rounding off to the nearest 1000 as well as rounding off to the nearest 10,100 Learners should solve problems in contexts and do context free calculations As number ranges get larger many learners tend to lose the parts of the number that they break up, when they try to combine again. This is especially the case when more than two 5 -digit numbers are being added. It is for this reason that column addition and column subtraction are introduced in Grade 5. In Term 2 one can still encourage learners to expand the numbers as they write them in columns. In Term 1, an option of a column method was provided, but it consisted of putting different place values into different rows. Learners continue to: - check their solutions themselves e.g. by using the inverse operation - judge the reasonableness of their solutions e.g. by rounding off numbers and estimating answers Example: Calculate: $56423+7581+21479$ - Breaking down all the numbers to add Adding in a row (horizontally) $\begin{aligned} & 50000+6000+400+20+3+7000+500+80+1+20000+1000+400+70+9 \\ & =50000+20000+6000+7000+1000+400+500+400+20+80+70+3+1+9 \\ & =70000+14000+1300+170+14 \\ & =70000+10000+4000+1000+300+100+70+10+4 \\ & =80000+5000+400+80+4 \\ & =85484 \end{aligned}$ The horizontal method may get unwieldy when more than two 5-digit numbers are added. The alternative is to use the expanded vertical method.	5 hours

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction		- Expanded vertical method $\begin{aligned} 56423= & 50000+6000+400+20+ \\ +7581 & =7000+500+80+1 \\ +21479 & =20000+1000+400+70+9 \\ & 70000+14000+1300+170+10 \\ & =70000+10000+5000+400+80+4 \\ & =85484 \end{aligned}$ - Adding on (by breaking down the number to be added) Calculate: $56423+7581$ $56423+7000 \rightarrow 63423+500 \rightarrow 63923+80 \rightarrow 64003+1 \rightarrow 64004$ This tends to work better if only two numbers are added. If a third or fourth number is added, they can be broken up and added one at a time, but the expanded column method is more efficient. - Breaking down all the numbers cording to place value parts to subtract using compensation (counterbalance) Example: Calculate: 8743-5684 $\begin{aligned} 8743-5684= & 8000+700+40+3-5000-600-80-4 \\ = & 8000+600+130+13-5000-600-80-4 \\ & (\text { by breaking up } 743 \text { into } 600+130+13) \\ = & 8000-5000+600-600+130-80+13-4 \\ = & 3000+0+50 \\ = & 3059 \end{aligned}$ - Breaking down numbers and using the expanded column method	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction		 - Subtracting by breaking down number to be subtracted Calculate 74 687-52 143 $\begin{aligned} & 74687-50000 \rightarrow 24687-2000 \rightarrow 22687-100 \rightarrow 22587-40 \rightarrow 22547- \\ & 3=22544 \end{aligned}$ or $\begin{aligned} 25746-10000-4000-500-30-2 & =(15746-4000)-500-30-2 \\ & =(11746-500)-30-2 \\ & =(11246-30)-2 \\ & =11216-2 \\ & =11214 \end{aligned}$ This tends to work better if only one number is subtracted from another. If a second or third number is subtracted, they can be broken up and subtracted one at a time, but the expanded column method is more efficient. Problems Summation, increase and decrease, comparison by difference; comparison by ratio See the description of problem types at the end of the grade notes	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.2 Common fractions	Concepts, skills and number range - Describing and ordering fractions - Count forwards and backwards in fractions - Compare and order common fractions to at least twelfths Calculations with fractions - Addition of common fractions with the same denominator - Recognize, describe and use the equivalence of division and fractions Solving problems Solve problems in contexts involving common fractions, including grouping and sharing Equivalent forms: Recognize and use equivalent forms of common fractions with denominators which are multiples of each other.	What is different to Grade 4? - Ninths, tenths, elevenths and twelfths - Learners count in fractions - Subtraction of fractions with the same denominators - Addition and subtraction of mixed numbers - Fractions of whole numbers that result in whole numbers Most of the new work mentioned above can be developed in Terms 3 and 4. However, learners can begin to count in fractions Learners should develop the concept of fractions in a variety of ways. Problem solving contexts can help learners to understand many ways of thinking about fractions. A variety of problems should be given to learners. See the types of fractions problems stated at the end of the grade notes. Learners can also work with apparatus and diagrams. Different diagrams or apparatus develop different ways of thinking about fractions. - Region or area models develop the concept of fractions as part of a whole. If used in particular ways they can also develop the concept of fraction as a measure. Examples of area models include circles cut into fraction pieces (or diagrams of pies), rectangles or other geometric shapes divided into fraction pieces (paper folding), fractions using square or dotty grid paper, geoboards. - Length or measurement models can be used to develop the concept of fractions as part of a whole and if used in particular ways also fraction as a measure. Examples of length models include fraction strips, Cuisenaire rods, number lines. - Set models develop the concept of fraction of a collection of objects (and can lay the basis for thinking about a fraction of a number e.g. $\frac{1}{3}$ of 12) Examples of set models include counters of any kind in different arrangements. Learners should not only work with one kind of model, because this can limit their understanding of fractions. For example fractions in diagram forms should include region model (circles and other geometric shapes divided into fraction parts), length models (including number lines) and set models (which show collections of objects). In Term 2 learners should revise and consolidate what they learned about fractions in Grade 4. This is described below, but learners can also count in fractions.	5 hours

$>$	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
(0)	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.2 Common fractions		Counting in fractions can happen - as learners place down fraction pieces - on the number line - or in number chains like the one shown below. Learners should solve problems as well as work with apparatus and diagrams (area, length and set models) to ensure that they - understand the relationship between fractions and division i.e. if you share equally amongst 3 learners you will be making thirds - are able to name fractions (terminology like "3 over 4" should be avoided as it tends to encourage learners to think about each fraction as two different numbers, rather than $\frac{3}{4}$ being a number which is greater than $\frac{1}{2}$ but less than 1). Learners should, through work with apparatus, diagrams and solving problems, deal with at least the list of fractions required in Grade 4. This should be extended to include the full range of fractions required in Grade 5. The initial focus on fractions should deal with understanding the concept of a fraction. Once learners have consolidated this they can move on to working with equivalence, then comparing and then calculating with fractions. Equivalence, comparing and ordering Equivalence should be approached using apparatus, diagrams or problem contexts. Learners are not expected to be able to give equivalent fractions in symbolic (number) form without having diagrams to which they can refer or a problem context in which to make sense of the equivalence. Once learners are comfortable with equivalence, it is easy for them to compare and order fractions. Calculations with fractions: Calculations with fractions in the first term can focus on - making fractions through grouping or sharing which is linked with understanding the relationship between division and fractions e.g. If children share sweets equally, they will each get $\frac{1}{5}$ of the sweets - adding fractions with the same denominators	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& CONTENT AREA \& TOPICS \& CONCEPTS AND SKILLS \& SOME CLARIFICATION NOTES OR TEACHING GUIDELINES \& DURATION (in hours)

\hline ®

\square

\square \& NUMBERS, OPERATIONS AND RELATIONSHIPS \& | 1.2 |
| :--- |
| Common fractions | \& \& Calculations as with other aspects of fractions should be developed either through problem contexts or with the use of apparatus or diagrams. Learners should be given problem contexts in which they need to add fraction parts. Learners should also be given either fraction pieces to count e.g. $\frac{3}{8}+\frac{4}{8}$ can be done by counting out and counting on in eighths with apparatus or by colouring in diagrams or by "hopping" in eighths on a number line. \&

\hline \& \multicolumn{5}{|l|}{| ASSESSMENT: |
| :--- |
| At this stage learners should have been assessed on: |
| - 6-digit numbers |
| - adding and subtracting up to 5 -digit numbers |
| - fractions |}

\hline
\end{tabular}

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :--- | :--- | :--- | :--- | :--- |
| MEASUREMENT | L.1
 Length
 (in hours) | | |

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
8	MEASUREMENT	4.1 Length		Tape measures that are longer than $1 m$ and $2 m$ should also be used e.g. builder tapes or surveyor tapes can be more than 10 metres. The longer measuring tapes are more difficult to use. Learners cannot only read off the number corresponding with the final measurement. They also need to know for how many metres they have unrolled the tape, e.g, the distance may be 4 m and 78 cm , but the tape may only show the number 78. When using the longer longer measuring tapes, estimation becomes even more important. Compare and order lengths up to 6 digits in $\mathbf{m m}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$ In the Intermediate Phase learners need to work with drawings of objects with specified lengths, or written descriptions of objects with specified lengths. At first learners can compare length given in the same units, but once they know how to convert between units, they can compare lengths and heights of objects which are specified in different units Calculations (including conversions) and problem-solving Measurement provides a context in which to practise skills acquired in Numbers, Operations and Relationships. The skills, operations and number ranges required are given below. Estimate and calculate using - Round numbers up or down to the appropriate unit of length - Rounding off to $5,10,100$ and1 000 - Addition and subtraction up to 5 -digit numbers - Multiplication: 3-digit number by 2-digit number - Division: 3-digit number by 2-digit number - Add common fractions in the context of measurement (using only halves, thirds, quarters, fifths, sixths, sevenths and eighths) By the end of the year the number ranges and operations can be increased to include everything that is covered under Numbers, Operations and Relationships. Solve problems relating to distance and length including rate and ratio problems. Conversions between units $\begin{array}{llc} m m & \leftrightarrow & c m \\ c m & \leftrightarrow & m \\ m & \leftrightarrow & k m \end{array}$ Converting between the units of measurement above provides a context for practising multiplication and division by $10,100,1000$ Conversions should be limited to whole numbers and fractions given only as halves / thirds / quarters / fifths / sixths / sevenths / eighths.	

Operations and Relationships. The skills, operations and number ranges required are given below.

Estimate and calculate using
he appropriate unit of length

Addition and subtraction up to 5 -digit numbers

- Multiplication: 3-digit number by 2-digit number
- Division: 3-digit number by 2-digit number
- Add common fractions in the context of measurement (using only halves, thirds,

By the end of the year the number ranges and operations can be increased to include everything that is covered under Numbers, Operations and Relationships.
Solve problems relating to distance and length including rate and ratio problems.
Conversions between units
$\mathrm{mm} \leftrightarrow \mathrm{cm}$
\leftrightarrow

Converting between the units of measurement above provides a context for practising multiplication and division by 10, 100, 1000
halves / thirds / quarters / fifths / sixths / sevenths / eighths

| CONTENT AREA | TOPICs | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :--- | :---: | :--- | :--- | :--- |

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
ন	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Multiplication	Number range for calculations	What is different to Term 1?	6 hours
			Multiplication of at least whole 3-digit by 2-digit numbers	In Term 1, learners multiply 2-digit by 2-digit numbers. In Term 2, learners multiply 3-digit by 2-digit numbers	
			Calculation techniques	Learners should do context free calculations and solve problems in contexts	
			Using a range of techniques to perform and check written and	Focus on multiples and factors, so that learners' knowledge of multiples and factors can be used in multiplication.	
			mental calculations of whole numbers including:	Learners should continue to judge the reasonableness of their solutions e.g. by estimating before calculating using rounding off to the nearest 10, 100, 1000	
			- estimation	Using the distributive property to multiply	
			- building up and breaking down numbers	$\begin{aligned} 547 \times(40+5) & =547 \times 40+547 \times 5 \cdots \text { (using the distributive property) } \\ & =21880+2735 \end{aligned}$	
			- using a number line		
			- rounding off and compensating - doubling and halving	or	
			Number range for multiples and factors	$\begin{aligned} 547 \times(50-5) & =547 \times 50-547 \times 5 \rightarrow---\rightarrow \text { (using the distributive property) } \\ & =27350-2735 \end{aligned}$	
			- Multiples of 2-digits whole numbers to at least 100	$=24615$ Using rounding-off to estimate and judge reasonableness of answer	
			- Factors of 2-digit whole numbers to at least 100	$547 \times 45=547 \times 50 \approx 27350$ Breaking down numbers into factors to multiply	
			Properties of whole numbers	Example:	
			- Recognize and use the commutative; associative and distributive properties	Calculate 547×42	
			with whole numbers	$547 \times 42=547 \times 7 \times 6$	
			- 0 in terms of its additive property	$=547 \times 2 \times 3 \times 7$	
			- 1 in terms of its multiplicative property	$=1094 \times 3 \times 7$	
			Solving problems	$=3282 \times 7$	
			- Solve problems involving whole	$=(7 \times 3000)+(7 \times 200)+(7 \times 80)+(7 \times 2)$	
			numbers, including	$=21000+1400+560+14$	
			- financial contexts	$=22974$	
			- measurement contexts - Solve problems involving whole numbers, including comparing two	Notice that as numbers get larger, learners will tend to use more than one calculating technique at the same time e.g. in the above example the factors of the multiplier are used but the multiplicant is split into place value parts.	
			or more quantities of the same kind	Kinds of problems	
				Treating groups as units/rate	
				See the description of problem types at the end of the Grade 5 notes	

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | |
| :---: | :---: | :---: | :---: | :---: |
| SPACE AND
 SHAPE | 3.2
 Properties of
 3-D objects | | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| (in hours) | | | |

ASSESSMENT:

At this stage learnes should have been assessed on:

- length
- multiplication of up to 3-digit numbers by 2-digit numbers
- 3-D objects

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	2.2 Geometric patterns	Investigate and extend patterns - Investigate and extend geometric patterns looking for relationships or rules of patterns - represented in physical or diagram form - sequences involving a constant difference - of learner's own creation - Describe observed relationships or rules in learner's own words Input and output values Determine input values, output values and rules for the patterns and relationships using flow diagrams Equivalent forms Determine equivalence of different descriptions of the same relationship or rule presented - verbally - in a flow diagram - by a number sentence	In Geometric Patterns in the Intermediate Phase the aim is for learners to get more practice in working with geometric patterns each year. Learners continue to do the activities they did in Grade 4. They just learn to do them more quickly. Learners no longer work with simple repeating patterns. Learners work with patterns that are made from 2-D shapes and 3-D objects or from drawings / diagrams of these shapes and objects. In Patterns, Functions and Algebra we choose geometric patterns that can be re-described using a number pattern, this does not mean that it can't be described in words. In fact the description in words is usually the starting point. In Shape and Space learners also work with visual patterns that are geometric. However they are only required to describe the patterns using the language of geometry and to copy the patterns. While many of these patterns can be described using algebraic expressions, this is beyond the scope of Intermediate Phase learners. Learners show the same patterns in different ways: in a diagram, as a verbal description, as a flow diagram and in a number sentence. Sometimes learners are able to see different aspects of a pattern when they change the form in which the pattern is presented. What kinds of geometric patterns should learners work with? Patterns in which the shapes grow (increase) or decrease in different ways. - patterns in which the shape keeps its form, but gets larger (or smaller) at each stage e.g. - patterns in which a shape or part of a shape is added at each stage e.g. In each of the examples above the pattern is made by adding on the same number of matchsticks. In the top pattern four matchsticks are added each time. In the second pattern three matchsticks are added each time. Both number patterns are patterns with a constant difference. Most geometric patterns learners see in Grade 5 will be patterns with a constant difference. They are more likely to get patterns with a constant ratio when working with number sequences.	4 Hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Division	Number range for calculations Division of at least whole 3-digit by 2-digit numbers Calculation techniques Use a range of techniques to perform and check written and mental calculations with whole numbers including - estimation - building up and breaking down numbers - using multiplication and division as inverse operations Number range for counting, ordering and representing, and place value of digits - Recognize the place value of digits in whole numbers to at least 6-digit numbers. - Round off to the nearest 10,100 , 1000 Number range for multiples and factors - Multiples of 2-digit numbers to at least 100 - Factors of 2-digit whole numbers to at least 100 Multiplication facts - Units by multiples of 10 - Units by multiples of 100 Properties of whole numbers - Recognize and use the commutative; associative; and distributive properties of whole numbers - 1 in terms of its multiplicative property	What is different to Term 1? In Term 1, learners revised and consolidated work done in Grade 4, i.e.learners divided at least whole 3-digit by 1 -digit numbers. In term 2, learners divide 3-digit numbers by 2 -digit numbers. Learners should do context free calculations and solve problems in contexts. The following problem types remain important: sharing, grouping and rate (see the description of problem types at the end of the Grade 5 notes) Learners continue to: - check their solutions themselves, by using multiplying - judge the reasonableness of their solutions, by estimating before calculating. Dividing Learners continue to use what they know about multiplication to do division. Focus on multiples and factors, so that learners' knowledge of multiples and factors can be used in division. Learners should continue to be given problems with and without remainders. Learners are still not encouraged to treat the digits separately, but rather to consider the number as a whole and to keep the value of the parts of the number in mind. Sometimes in the past learners were taught to write out a whole times table, which they were encouraged to work out by repeated addition. At other times in the past learners were encouraged to divide by doing repeated subtraction of the divisor. Many learners got lost in the extensive repeated subtraction of the divisor when dividing 3 -digit by 2 -digit numbers. When dividing 3 -digit by 2 -digit numbers, it is preferable for learners to work with the easily remembered multiplication facts of multiples of 10 and then doubling and halving. These large groups of numbers can then be subtracted from the number being divided into. In this way learners do fewer subtractions and are more likely to arrive at the correct answer.	8 hours

$>$	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES		DURATION (in hours)
(1)	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Division	Solving problems Solve problems in contexts involving whole numbers, including financial contexts Solve problems involving whole numbers, including - comparing two or more quantities of the same kind (ratio) - comparing two quantities of different kinds (rate) - grouping and equal sharing with remainders	Example $442 \div 17$ Learners can write out a "clue board" of what they know about multiplying by 17. While they do not know the 17 times table, they do know 17×10 and how to use this to get multiples of 17×10. Learners find 17×5 by halving 17×10 Learners use doubling to find $17 \times 2 ; 17 \times 4 ; 17 \times 8$. Lerners fill in other multiples as they need to use them e.g. Learners usemultiply and then subtract to calculate by approximation. $442 \div 17=20+6=26$ Learners should check their calculations by multiplying: $\begin{aligned} 26 \times 17 & =(26 \times 10)+(26 \times 7) \\ & =260+182 \\ & =422 \end{aligned}$		
$\stackrel{\rightharpoonup}{\omega}$	REVISION					3 hours
	ASSESSMENT (Half yearly)					6 hours

$\stackrel{\rightharpoonup}{\perp}$	GRADE 5 TERM 3				
	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	NUMBERS, OPERATIONS AND RELATIONSHIPS	Mental Mathematics	Mental calculations involving: - Addition and subtraction facts of - units - multiples of 10 - multiples of 100 - multiples of 1000 - Multiplication of whole numbers to at least 10×10 - Multiplication facts of - units by multiples of 10 - units by multiples of 100 - units by multiples of 1000 - units by multiples of 10000 Number range for counting, ordering, comparing and representing and place value of digits - Count forwards and backwards in whole number intervals up to at least 10000 - Order, compare and represent numbers to at least 6-digit numbers - Represent odd and even numbers to at least 1000. - Recognize the place value of digits in whole numbers to at least 6-digit numbers. - Rounding off to the nearest 5,10 , 100 and 1000	The mental Mathematics programme should be developed systematically over the year. Learners should not simply be asked to do random calculations each day. As learners cover topics and develop calculating techniques in the main part of the lesson, so aspects of these can be incorporated into the mental Mathematics programme. Concepts and skills are developed through the main lesson, and then practised, sometimes with smaller number ranges in the mental Mathematics programme. See further notes in Term 1 and Term 2, but be aware that number ranges have increased. The increased number ranges are shown in the column on the left.	10 minutes every day

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	Mental Mathematics	Calculation techniques Using a range of techniques to perform and check written and mental calculations of whole numbers including - estimation - adding and subtracting in columns - building up and breaking down numbers - using a number line - rounding off and compensating - doubling and halving - using addition and subtraction as inverse operations - using multiplication and division as inverse operations Number range for multiples and factors - Multiples of 2-digits whole numbers to at least 100 - Factors of 2-digit whole numbers to at least 100 Properties of whole numbers - Recognize and use the commutative; associative; distributive properties of whole numbers - 0 in terms of its additive property - 1 in terms of its multiplicative property		

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
1	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.2 Common fractions	Describing and ordering fractions: - count forwards and backwards in fractions - compare and order common fractions to at least twelfths Calculations with fractions: - addition and subtraction of common fractions with same denominator - addition and subtraction of mixed numbers - fractions of whole numbers which result in whole numbers - recognise, describe and use the equivalence of division and fractions Solving problems Solve problems in contexts involving common fractions, including grouping and sharing Equivalent forms: Recognize and use equivalent forms of common fractions with denominators which are multiples of each other	Learners should develop the concept of fractions in a variety of ways, including - a range of problem-solving contexts (see the types of fractions problems stated at the end of the Grade 5 notes). - a range of apparatus and diagrams (see notes in Term 1) Learners are not expected to be able to give equivalent fractions in symbolic (number) form without having diagrams to which they can refer or a problem context in which to make sense of the equivalence. It is recommended that fraction strips or fraction walls are provided when learners are formally assessed on equivalence. Once learners are comfortable with equivalence, it is easy for them to compare and order fractions. Calculations with fractions: Learners continue to - make fractions through grouping or sharing which is linked with understanding the relationship between division and fractions e.g. If 5 children share sweets equally, they will each get $\frac{1}{5}$ of the sweetss - add fractions with the same denominators Calculations as with other aspects of fractions should be developed either through problem contexts or with the use of apparatus or diagrams. Learners should be given problem contexts in which they need to add fraction parts. Learners should also be given either fraction pieces to count e.g. $\frac{3}{8}+\frac{4}{8}$ can be done by counting out and counting on in eighths with apparatus or by colouring in diagrams or by "hopping" in eighths on a number line. Learners are also expected to: - find fractions of whole numbers which result in whole numbers e.g. what is $\frac{1}{4}$ of 24? If learners have worked with drawings of collections of objects, and they know the relationship between division and fractions, this can be done without learning a rule or method. Learners can simply draw 24 objects and then make 4 equal groups - subtract fractions with the same denominators - add and subtract mixed numbers It is not expected that learners know rules for simplifying fractions or for converting between mixed numbers and fraction forms. Learners should	5 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.2 Common fractions		know from working with equivalence, when a fraction is equal to or greater than Examples The examples below are illustrated without contexts, but could equally arise in a problem situation. $2 \frac{3}{5}+3^{\frac{4}{5}}=5^{\frac{7}{5}}=5+\frac{5}{5}+\frac{2}{5}=6 \frac{2}{5}$ Similarly with subtraction, learners can first subtract the whole numbers, and then use equivalence and compensation to complete the calculation. $6 \frac{3}{5}-2 \frac{4}{5}=4+\frac{3}{5}-\frac{4}{5}=3+\frac{5}{5}+\frac{3}{5}-\frac{4}{5}=3 \frac{4}{5}$ Measurement is an important context through which to develop and consolidate the concept of fractions. If the suggested sequencing in this document is followed then learners will alredy have covered length and capacity. Length and capacity can be used to develop the concepts of fractions, equivalence, and adding with fractions.	

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	MEASUREMENT	4.2 Mass	Practical measuring of 3-D objects by estimating, measuring, recording, comparing and ordering Measuring instruments bathroom scales, kitchen scales and balances Units grams (g) and kilograms (kg); Calculations and problem-solving related to mass include Solve problems in contexts related to mass Converting between grams and kilograms limited to examples with whole numbers and fractions	In Grade 5 learners work with the same units of mass as they did in Grade 4. They also work with the same measuring instruments. Learners need to - consolidate their sense of how much 1 kg is - consolidate their sense of how much $1 g$ is - understand and know the relationship between kilograms and grams. Learners should have a sense of which units are appropriate for measuring different masses. For example they need to know which units to use to state the mass of - a cow - a baby - flour for baking a cake Learners should understand which instruments are appropriate for measuring different masses. For example they need to know which instruments to use to measure - their own mass - the mass of flour for baking a cake Reading instruments and measuring mass Learners need to - estimate mass in grams and kilograms, including being able to match objects to the appropriate unit of measurement before measuring them - choose, with reasons, the most appropriate scale to use for particular objects from a range of scales provided - read kitchen scales in g and $k g$ and bathroom scales in $k g$ and balances in g and kg This includes reading the mass on real scales balances and pictures of scales. The skills involved include - knowing where to stand to read the scale correctly - knowing how to read the numbered gradation lines and to calculate what the un-numbered gradation lines mean. Learners need to read - different kinds of measuring apparatus - apparatus in which the numbered intervals, gradation lines or calibration represent different intervals.	5 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Counting, ordering, comparing, representing and place value of digits	Number range for counting, ordering, comparing, representing and place value of digits - Count forwards and backwards in whole number intervals up to at least 10000 - Order, compare and represent numbers to at least 6-digit numbers - Represent odd and even numbers to at least 1000 - Recognize the place value of digits in whole numbers to at least 6-digit numbers - Round off to the nearest $5,10,100$ or 1000	See further notes in Term 1, but be aware that number ranges have increased. The increased number ranges are shown in column 3 on the left and summarised in Term 2 notes, clarifications and teaching guidelines. All work developed here can be practised throughout the year in the mental Mathematics programme.	1 hour

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
$\begin{gathered} \text { NUMBERS, } \\ \text { OPERATIONS } \\ \text { AND } \\ \text { RELATIONSHIPS } \end{gathered}$	1.1 Whole numbers Addition and subtraction		- The vertical column method to subtract	
ASSESSMENT: At this stage learners should have been assessed on: - fractions - mass - addition and subtraction of up to 5 -digit numbers				

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	SHAPE AND SPACE	3.5 Viewing objects	Position and views Link the position of viewer to views of single everyday objects, collections of everyday objects or scenes from everyday life	What is different to Grade 4 ? - In Grade 4 learners matched different views of single everyday objects. - In Grade 5 learners work with views of single everyday objects or collections of everyday objects. They match views of the object or objects with the position of the viewer. Position and views Learners are presented with multiple views of an everyday object or collection of everyday objects or scenes from everyday life, as well as positions of viewers in relation to the object or objects. They match each view with a viewer or viewpoint. Everyday objects often have more irregular surfaces than geometric objects e.g. compare a teapot to a sphere or a person to a cube. This makes it easier to identify views and viewpoints of everyday objects.	5 hours
	SPACE AND SHAPE	3.1 Properties of 2-D shapes	Shapes learners need to know and name are - regular and irregular polygons triangles, squares, rectangles, other quadrilaterals, pentagons, hexagons, heptagons, - circles - similarities and differences between squares and rectangles Characteristics learners use to distinguish, describe, sort and compare shapes - Straight and / curved sides - Number of sides - Length of sides - Angles: limited to - right angles - angles smaller than right angles - angles greater than right angles Further activities to focus learners on characteristics of shapes Draw 2-D shapes on grid paper Angles limited to - right angles - angles smaller than right angles - angles greater than right angles	This is revision and consolidation of the work done in Term 1: see Term 1 notes. Learners should continue to do practical work with concrete apparatus, but they should also continue to do written exercises.	4 hours

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :---: | :---: | :--- | :--- | :--- |

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION （in hours）
MEASUREMENT	4.5 Temperature	Practical measuring of temperature by estimating，measuring，recording， comparing and ordering Measuring instruments thermometers Units degrees Celsius（ ${ }^{\circ} \mathrm{C}$ ） Calculations and problem－solving related to temperature Solve problems in contexts involving to Temperature Calculate temperature differences limited to positive whole numbers	Measuring temperature is a new topic in Grade 5 Mathematics and Geography． Learners need to develop a sense of how hot or cold things are when described in degrees Celsius．This can be achieved through learning common temperature referents e．g． －the freezing point of pure water is $0^{\circ} \mathrm{C}$ －the boiling point of pure water is $100^{\circ} \mathrm{C}$ －the average normal human body temperature is $370^{\circ} \mathrm{C}$ －the daily environmental temperatures． Reading temperature measurement Learners should read temperatures on pictures of thermometers． Where possible learners should read temperatures on real thermometers． Reading calibrated capacity measuring instruments Reading analogue thermometers requires learners to read the temperature on numbered and un－numbered gradation lines．In thermometers designed to read the environmental temperatures the unnumbered gradation lines often refer to whole degrees．In thermometers designed to read human body temperature the unnumbered gradation lines often refer to fractions of degrees． Recording and reporting on temperature measurements Learners should record and report on temperature measurements they have read off thermometers in whole numbers．This may involve rounding up or down．They can also record and report temperatures by using fraction notion． Calculations and problem－solving related to temperature Calculations and problem－solving involvingtemperatures should be limited to positive whole numbers and fractions（although learners in Grade 5 work with halves，thirds，quarters，fifths，sixths，sevenths，eighths，ninths，tenths，elevenths and twelfths，with temperature calculations it makes sense to use tenths，quarters and halves）	2 hours

ASSESSMENT：

At this stage learners should have been assessed on：
－views
－tranformations－making composite shapes by rotating，translating and reflecting
－temperature

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
				- comparing data collected at your school to national data from ‘Census At School e.g. favourite sports; favourite subjects; transport to school; time taken to get to school; type of dwelling; access to goods and services at home - comparing data collected from girls and boys e.g. favourite sports, favourite movies, favourite school subjects - comparing rainfall each month for a town in summer and winter rainfall areas Learners should do at least 1 example in which they compare graphs. Complete data cycle: context personal data The complete data cycle includes asking a question, collectin, organising, representing, analyzing and interpreting data and reporting on the data. Choose a different topic to Term 1. Work through the whole data cycle to make an individual bar graph using contexts that relate to themselves, their class, their school or their family. Suitable topics include: - favourite sports / favourite movies / favourite music / favourite TV programmes / foods or cool drinks/ favourite colours, etc. - heights of learners in class - mass of learners in class - shoe size of learners in class - average time taken to get from home to school - number of people staying in homes of learners in the class Analyse ungrouped numerical data using measures of central tendency Learners determine the mode of ungrouped numerical data sets. Suitable topics include: - heights of learners in the class - mass of learners in the class - shoe size of learners in the class - average time taken to get from home to school - number of people staying in the homes of learners in the class - temperatures for a month	

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	2.1 Numeric patterns	Investigate and extend patterns - Investigate and extend numeric patterns looking for relationships or rules of patterns - sequences involving a constant difference or ratio - of learner's own creation - Describe observed relationships or rules in learner's own words Input and output values Determine input values, output values and rules for patterns and relationships using flow diagrams. Equivalent forms Determine equivalence of different descriptions of the same relationship or rule presented - verbally - in a flow diagram - by a number sentence	In Term 1 learners worked with flow diagrams in order to learn about - multiplication and division as inverse operations - multiplication of units by multiples of ten, 100, 1000 - the associative property with whole numbers and how we can use this property when we multiply Flow diagrams are further developed in this term. Learners also work with number sequences. It is useful for learners to be given examples which continue to focus on the properties of operations. For example, learners have seen that they can multiple in any order, and that they can add in any order. They can contrast flow diagrams to see whether order makes a difference if they add and multiply. Example Learners should discuss whether the order of the operations made a difference. Once learners have had practice in finding input values and output values when the rule is stated, they can be given examples where input values and output values are provided but no rule is given. At first these can be flow diagrams in which there is a "one stage rule" i.e. add or subtract or multiply or divide.	5 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	2.1 Numeric patterns		- sequences without a constant difference or ratio Some examples of patterns with a constant difference - 2; 4; 6; 8....... - 18; 16; 14; 12 \qquad In the above examples learners are adding 2 or subtracting 2 to create the pattern. Learners may describe it as a pattern of counting on or counting back in twos. Learners should also be given examples which do not start with a multiple of the number they are adding to or subtracting from. Two examples are given below. - 1; 4; 7; 10....... - 87; 66; 45; Examples of patterns with a constant ratio - 1 600; 800; 400; \qquad - In the above example learners are dividing by 2. All the numbers in the sequence are multiples of 2 . Learners should also be given examples in which the numbers in the sequence are not multiples of the number they are multiplying or dividing by e.g. $\begin{aligned} & 3 ; 6 ; 12 ; 24 \ldots \ldots \\ & 10 ; 30 ; 90 ; 270 ; \ldots . . \end{aligned}$ Examples of patterns without a constant difference or ratio $3 ; 7 ; 12 ; 18$ 0; 2; 6; 12; 24 1, 4; 9; 16; 25;	

$\stackrel{\rightharpoonup}{\mathrm{O}}$	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
	NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Multiplication	Number range for calculations	This is further practice of multiplication done in Term 2. Refer to those notes	7 hours
			Multiplication of at least whole 3-digit by 1-digit numbers		
\bigcirc			Calculation techniques		
$\frac{\pi}{0}$			Use a range of techniques to perform and check written and mental calculations of whole numbers including		
3			- estimation		
\sum_{i}^{8}			- building up and breaking down numbers		
¢ ¢ ∞			Number range for counting, ordering, representing and place value of digits		
17 1 0			- Recognize the place value of digits in whole numbers to at least 6-digit numbers.		
$\stackrel{\Gamma}{2}$			- Round off to the nearest 10,100 or 1000		
$\xrightarrow{0}$			Number range for multiples and factors		
$\frac{11}{2}$			- Multiples of 2-digit numbers to at least 100		
$\stackrel{\square}{\square}$			- Factors of 2-digit whole numbers to at least 100		
©			Multiplication facts for		
			- units by multiples of 10 - units by multiples of 100		
			Properties of whole numbers		
			- Recognize and use the commutative, associative and distributive properties with whole numbers		
			- 1 in terms of its multiplicative property		

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :--- | :---: | :--- | :--- | :--- |
| NUMBERS,
 OPERATIONS
 AND
 RELATIONSHIPS | Whole
 Wumbers
 nultiplication | Solving problems
 Solve problems in contexts involving
 whole numbers, including financial
 contexts
 Solve problems involving whole
 numbers, including
 - comparing two or more quantities of
 the same kind (ratio)
 - comparing two quantities of different
 kinds (rate) | |
| ASSESSMENT:
 At this stage learners should have been assessed on:
 - data handling
 - number patterns
 - multiplication to at least 3-digits by 2-digits | | | |

GRADE 5 TERM 4

GRADE 5 TERM 4				
CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	Mental Mathematics	Mental calculations involving: - Addition and subtraction facts of - units - multiples of 10 - multiples of 100 - multiples of 1000 - Multiplication of whole numbers to at least 10×10 - Multiplication facts for - units by multiples of 10 - units by multiples of 100 - units by multiples of 1000 - units by multiples of 10000 Number range for counting, ordering, comparing and representing, and place value of digits - Count forwards and backwards in whole number intervals up to at least 10000 - Order, compare and represent numbers to at least 6-digit numbers - Represent odd and even numbers to at least 1000 - Recognize the place value of digits in whole numbers to at least 6-digit numbers - Rounding off to the nearest and 5 , 10, 100 and 1000	See the notes in Term 2, but be aware that number ranges have increased. The increased number ranges are shown in the column on the left. The mental Mathematics programme should be developed systematically over the year.	10 minutes every day

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
		1.1 Whole numbers Counting, ordering, comparing, representing and place value of digits	Number range for counting, ordering, comparing and representing, and place value of digits - Count forwards and backwards in whole number intervals up to at least 10000 - Order, compare and represent numbers to at least 6-digit numbers - Represent odd and even numbers to at least 1000. - Recognize the place value of digits in whole numbers to at least 6-digit numbers - Round off to the nearest and 5,10 , 100 and 1000	See further notes in Term 1, but be aware that number ranges have increased. The increased number ranges are shown in the column 3 on the left and summarised in Term 2. Notes clarifications and teaching guidelines. All work dealt with here can be practised throughout the year in the mental Mathematics programme.	1 hour

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
NUMBERS, OPERATIONS AND RELATIONSHIPS	1.1 Whole numbers Addition and subtraction	Number range for calculating Addition and subtraction of whole numbers of at least 5 digits. Calculation techniques Use a range of techniques to perform and check written and mental calculations of whole numbers including - estimation - building up and breaking down numbers - rounding off and compensating - doubling and halving - using a number line - using addition and subtraction as inverse operations Number range for multiples and factors Multiples of 2-digit numbers to at least 100 Properties of whole numbers Recognize and use the commutative and associative properties with whole numbers Solving problems Solve problems in contexts involving whole numbers, including financial contexts.	This is further practice of addition and subtraction with 5-digit numbers done in Terms 2 and 3 .Refer to those notes in both these terms.	5 hours

	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
198 CURRICULUM AND ASSESSMENT POLICY STATEMEN	SPACE AND SHAPE	3.2 Properties of 3-D objects	Objects learners need to know and name: - Rectangular prisms and other prisms - Cubes - Cylinders - Cones - Pyramids - Similarities and differences between cubes and rectangular prisms Characteristics learners use to distinguish, describe, sort and compare shapes - Shape of faces - Number of faces - Flat and curved surfaces Further activities to focus learners on characteristics of objects - Create 3-D models using cut-out polygons - Cutting open boxes to trace and describe their nets	This is further practice of 3-D objects done in Term 2. Refer to the notes in Term 2	5 hours
	ASSESSMENT: At this stage learners should have been assessed on: - addition and subtraction of 5-digit numbers - 3-D objects				

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	DOME CLARIFICATION NOTES OR TEACHING GUIDELINES (in hours)	
NUMBERS, OPERAAIONS AND RELATIONSHIPS	Common fractions	Describing and ordering fractions - Count forwards and backwards in fractions - Compare and order common fractions to at least twelfths Calculations with fractions - Addition and subtraction of common fractions with the same denominator - Addition and subtraction of mixed numbers	This is further practice of fractions done in Term 3. Refer to those notes. - Fractions of whole numbers which 4 length, capacity and mass can be used as contexts for fractions. result in whole numbers - Recognize, describe and use the equivalence of division and fractions Solving problems Solve problems in contexts involving common fractions, including grouping and sharing Equivalent forms: Recognize and use equivalent forms of common fractions with denominators which are multiples of each other.	

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | DOME CLARIFICATION NOTES OR TEACHING GUIDELINES
 (in hours) |
| :--- | :---: | :---: | :--- | :--- | :--- |
| NUMBERS,
 OPERATIONS
 AND
 RELATIONSHIPS | T.1
 Whole
 numbers
 Division | Number range for calculations
 Division of at least whole 3-digit by
 2-digit numbers.
 Calculation techniques
 Use a range of techniques to perform
 and check written and mental
 calculations with whole numbers
 including
 - estimation | This is further practice of division of 3-digit numbers by 2-digit numbers done in
 Term 2. Refer to those notes. |

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :---: | :---: | :--- | :--- | :--- |
| NUMBERS,
 OPERATIONS
 AND
 RELATIONSHIPS
 (in hours) | Whole
 Wumbers
 Division | Solving problems
 Solve problems in contexts involving
 whole numbers, including financial
 contexts.
 Solve problems involving whole
 numbers, including
 - comparing two or more quantities of
 the same kind (ratio)
 - comparing two quantities of different
 kinds (rate)
 grouping and equal sharing with
 remainders | |

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
MEASUREMENT	4.6 Perimeter, area and volume	Perimeter Measure perimeter using rulers or measuring tapes Measurement of area Find areas of regular and irregular shapes by counting squares on grids in order to develop an understanding of square units Measurement of volume Find volume/capacity of objects by packing or filling them in order to develop an understanding of cubic units	Learners are not required to know or apply formulae for the perimeter, area or volume of any shape or objects in the Intermediate Phase. Area and volume are only measured informally in the Intermediate Phase. Grade 5 learners practise and consolidate what they have learned about perimeter, area and volume in Grade 4. In Grade 5 learners measure the perimeters of shapes and spaces with rulers and measuring tapes. They are required to state and record this measurement in standard units: $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$. They are also required to work from drawings in which side lengths are specified in $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ or km . Here they add the lengths. At times in Grade 5 they will also count the lengths of the perimeters by counting the number of sides of the square grids. Here learners need to know that the diagonal distances between corners of a grid square are longer than the vertical or horizontal distances between corners of a grid square. In Grade 5 area measurements continue to be informal. Learners continue to count how many grid squares the shape covers. The area is stated in number of grid squares. Shapes should include - regular shapes with straight sides where the sides are all the same length - irregular shapes with straight sides where the sides are not all the same length - shapes with curved sides In Grade 5 learners continue to - count how many cubes or rectangular prisms they use to fill a container - the volume of the container is stated in number of cubes or rectangular prisms (boxes or blocks) - make stacks with cubes or rectangular prisms - the volume of the stack is stated in number of cubes or rectangular prisms (boxes or blocks) - interpret pictures of - stacks made of cubes, rectangular prisms so that they are able to state the volume in terms of the number of cubes or rectangular prisms - containers filled with cubes, rectangular prisms so that they are able to state the volume in terms of the number of cubes or rectangular prisms What is capacity? What is volume? Capacity is the amount of substance that an object can hold or the amount of space inside the object. Volume is the amount of space that an object occupies. So a bottle can have a 1 litre capacity, but it may not be filled to its full capacity, it could e.g., only contain a volume of 250 ml .	7 hours

| CONTENT AREA | TOPICS | CONCEPTS AND SKILLS | SOME CLARIFICATION NOTES OR TEACHING GUIDELINES |
| :---: | :---: | :---: | :---: | :---: |
| (in hours) | | | |

ASSESSMENT:
At this stage learners should have been assessed on:

- fractions
- division of up to 3-digit numbers by 2-digit numbers
- area, perimeter and volume

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
SHAPE AND SPACE	3.6 Position and movement	Location and directions Locate position of objects / drawings/ symbols on grid using alpha-numeric grid references Locate positions of objects on a map using alpha-numeric grid references Follow directions to trace a path between positions on a map	Cells in a grid are often labelled with a letter and a number e.g. D4; A3; E7. This is called alpha-numeric referencing. What is different to Grade 4? - In Grade 4 learners located positions on grids and maps using alpha-numeric references - In Grade 5 learners follow directions to trace a path between positions on a map with a grid Location and directions In Geography in Grade 4, Term 1, learners give directions using left, right and landmarks. In Term 2 of Grade 4 and Term 2 of Grade 5 they also use pair of compasses directions. Learners draw on the work done on alpha-numeric grids in Geography and Mathematics in Grade 4 and the work done involving directions in Grade 4 \& 5 Geography, when they find positions and follow directions on grids and maps. The work is developed in Geography and practised in Mathematics.	2 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
SHAPE AND SPACE	3.4 Transformations	Use transformations to make composite shapes Make composite 2-D shapes including shapes with line symmetry by tracing and moving a 2-D shape in one or more of the following ways: - by rotation - by translation - by reflection Use transformations to make tessellations Make tessellated patterns including some patterns with line symmetry by tracing and moving 2-D in one or more of the following ways: - by rotation - by translation - by reflection Describe patterns Refer to lines, 2-D shapes, 3-D objects, lines of symmetry, rotations, reflections and translations when describing patterns.	In the suggested sequencing of Grade 5 Mathematics, transformations have already been done in Term 3. In that term learners focused on building composite shapes including some shapes with symmetry. In Term 4 learners extend this to focus on tessellations and describing patterns in the world. What is different to Grade 4 ? In Grade 4 learners make tessellations by packing out shapes. In Grade 5 learners trace and move a 2-D shape using reflections, rotations and translations to draw tessellations Use transformations to make tessellations Learners use 2-D shapes to make tessellation patterns. In Grade 4 these tiling patterns can be made by packing out the tiles. Grade 5 learners are required to make the patterns by rotating, translating of reflecting a single shape. Learners trace and move a 2-D shape to draw the pattern. Learners need to identify and describe tessellation patterns Describe patterns Learners describe patterns of the shapes they see and how they would move that shape if they wanted to continue the pattern e.g. - the pattern I see on the honeycomb looks like a tessellation pattern of hexagons. I can make this pattern by translating a hexagon. - the pattern I see on the bead bracelet looks like a tessellation pattern of triangles. I can make this pattern by reflecting a triangle Learners identify symmetry in patterns e.g. symmetry in Ndebele mural art Learners often find patterns easier to describe, once they have copied or made the patterns. It is useful to link the process of making or copying patterns with the descriptions of patterns from nature, modern everyday life and our cultural heritage. Often the geometrical process you use to make a copy of the pattern is not the same as the original process used to make the pattern. Bees do not tessellate with hexagons to make a honeycomb, but if learners tessellate with a hexagon, they can make a pattern that looks similar to the pattern they see in the honeycomb.	4 hours

CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION (in hours)
PATTERNS, FUNCTIONS AND ALGEBRA	2.3 Number sentences (introduction to algebraic expressions)	Number sentences - Write number sentences to describe problem situations - Solve and complete number sentences by: - inspection - trial and improvement - Check solution by substitution	This is a continuation of the work done with number sentences in Term 1. In this term learners are given practice in writing number sentences to describe problem situations. Learners have the opportunity to practise a mixture of all problem types that they have encountered so far during the year. At some point they are asked to write a number sentence to describe the problem. As before number sentences are used to develop the concept of equivalence, but they can also relate to all aspects of number work covered during the year. If learners have not had experience answering multiple choice questions, give them some examples in this second half of the year as it is a common format used in external systemic tests. Number sentences can also consolidate the idea of expressing a rule. For which pairs of numbers does the rule "multiply the first number by and thensubtract to get the second number" apply? (a) $16 \diamond 2$ (b) $5 \diamond 38$ (c) $38 \triangleleft 5$ (d) $3 \diamond 22$ Term 1 we used number sentences to focus learners' attention on the properties of operations. Since learners have been using these properties, the examples can focus more on the notion of equivalence. Some examples are provided below: Examples focusing on the properties of operations Which of the following statements is TRUE? (a) $9 x$ \square = $\square+9$ b) $9 x$ $\square=$ = \square 9 (c) $9 \times \square=\square \times 9$ (d) $9 x$ \square $=9+$ \square How much is 24×17 less than 25×17 ? (a) 1 (b) 17 (c) 25 (d) 45 Choose the correct answer: $(26 \times 39)+(26 \times 1)=$ (a) 26×27 (b) 400 (c) 26×4 (d) 26×40 Which of the statements below is equivalent to $15 \times(4 \times 9)$? (a) $(15 \times 4) \times 9$ (b) $15 \times 2 \times 2 \times 3 \times 3$ (c) $(15 \times 4)+(15 \times 9)$ (d) $(10-1)(15 \times 4)$	3 hours

No	CONTENT AREA	TOPICS	CONCEPTS AND SKILLS	SOME CLARIFICATION NOTES OR TEACHING GUIDELINES	DURATION （in hours）
0 0 0 0 0 3 2 0 1 0 0 0 0	DATA HANDLING	5.2 Probability	Perform simple repeated events and list possible outcomes for events such as －tossing a coin －rolling a die －spinning a spinner Count and compare the frequency of actual outcomes for a series of trials up to 20 trials．	Performing simple repeated events Learners need to perform experiments by tossing a coin，rolling a die，or spinning a spinner．Doing experiments with a coin is easier than with a die because the coin can only have two outcomes（heads or tails），while rolling the die can have 6 outcomes（numbers1－6）．The spinner can have any number of outcomes， depending on number of divisions made on the spinner．Learners must first list the possible outcomes before doing the experiments．They should learn how to record the results of their experiments in a table using tally marks． They then count how many times heads or tails，or each number，or colour on a spinner，occurs in 20 trials．If learners do this in groups，the results from all the groups can be collated．They can then compare the number of outcomes that occur as the number of trials increase．	2 hours
	REVISION				4 hours
	ASSESSMENT				6 hours

Problem type	Additional notes	Examples
Summation	A sum	A farmer sells fruit to several stores in his city. He sold 13789 pears, 35278 apples and 24678 oranges in one month. How much fruit did he sell in one month?
	Missing part of a given sum	Farm workers picked 42345 pears during the morning. After lunch they picked some more. By the end of the day, they had picked 16589 pears. How many pears did they pick after lunch?
Increase and decrease	Calculate the result	The price for a container of beans is R65 231. Some of the beans are ruined and the price is decreased by R14 789. What is the price of the container of beans now?
	Calculate the change	A salesman earned R34 328 during November. During December, the amount earned increased to R47 435. How much more money did he earn during December tha in November?
	Calculate the initial result	A farmer struggled to sell his farm. He decreased the original price of his farm by R10 456. He sold the farm for R 85787. What was the original price that the farmer wanted for his farm?
Grouping	- Grouping problems that are solved with division and/or repeated subtraction - Answers to problems have or do not have remainders	A shop gives boxes of toys to a poor school. Each box contains 48 toys. If there are 875 toys, how many boxes are needed? or A company gives 35 bags of soccer balls to a soccer club. If there are 315 soccer balls, how many balls are there in a bag?
	- Grouping problems that are solved with multiplication and/or repeated addition - Answers to problems have or do not have remainders	A school gave 45 boxes of toys to an orphanage. Each box contains 548 toys. How many toys did the school donate?
	- Grouping problems in an array form - These problems can be solved with division (or repeated subtraction) or multiplication (repeated addition)	On a farm there are 134 rows of tomatoes. Each row has 56 tomato plants. How many tomato plants are there in total?
Sharing	- Sharing problems can be solved with division/repeated subtraction - Smaller groups of equal size are formed from a given amount - Answers to calculations that have remainders can lead to the concept of common fractions. See Grade 4 example.	A farmer shares 654 apples equally between 45 shops. How many apples does each shop get? How many apples are left over?
Comparison by difference		Joey and Tana each own a srapyard. Joey's scrapyard sold 65346 car parts in a year. Tana's scrapyard should sell 34968 more car parts in a year to equal Joey's number of car parts sold. How many car parts has Tana sold so far?

Problem type	Additional notes	
Treating groups as units		25 candles cost R236. How much will 375 of the same candles cost?
	Learners calculate the total if given rate per object	One box of sweets costs R48. How much will 135 of the same boxes of sweets cost?
	Learners calculate the rate per object	The mass of 12 same-sized bags of sugar is 300 kg . What is the mass of 1 bag of sugar?
		Learners first calculate the rate and then apply it to generate more information

Meaning of the fraction	Examples of problems			
Part of a whole where the whole is a single object	Susan eats $\frac{1}{3}$ of a chocolate cake. Another $\frac{1}{4}$ is given away. How much cake is left over?			
Part of a whole where the whole is a collection of objects	A wall has 124 panels. A painter paints $\frac{1}{3}$ of these panels. How many panels has he painted? How many panels must still be painted? Or Sue uses $\frac{2}{3}$ of an apple to make a cake. If she has 30 apples, how many cakes can she bake?			
Relationship	The daughter earns a quarter of what her father earns per hour. If her father earns R267 per hour, how much does the daughter earn?			
Ratio	The recipe says that for every 2 cups of sugar, $\frac{1}{4}$ cup of butter is needed. If 50 cups of sugar are used; how many cups of butter are needed?			
Comparator	What is the longest? $\frac{6}{9}$ metres or $\frac{2}{3}$			
Unetres of a strip of material?			How many $\frac{1}{3}$ of a metre is there in $5 \frac{2}{3}$ metre?	
:---	:---			
Number	Give a number that is greater than $3 \frac{2}{3}$, but less than $3 \frac{11}{12}$			
Fractional parts put together to make a whole (iterative)	35 children get cool drink. If each child gets $\frac{2}{11}$ of a bottle of cool drink, how many bottles are needed to serve all the children?			

